EFFECT OF PRO-DRONE, AN INSECT GROWTH REGULATOR, ON SOLENOPSIS INVICTA BUREN1 AND NONTARGET ANTS2

Sherman A. Phillips, Jr., Stanley R. Jones3,
David M. Claborn4, and James C. Cokendolpher

Department of Entomology
Texas Tech University
Lubbock, TX 79409

ABSTRACT

An insect growth regulator, Pro-Drone \([1-(8\text{-}methoxy\text{-}4,8\text{-}dimethyl-9\text{-}nonyl})\text{-}I\text{-}(I\text{-}methylethyl) benzene\], was aerially applied twice at the rate of 11.86 g AI/ha on ca. 200,000 ha in Kendall and Kerr Cos., Texas, during 1983 to control the red imported fire ant, Solenopsis invicta Buren. The first application was made between 10-20 June and the second application between 26 September - 1 October. To determine the impact of the insect growth regulator on \(S.\) invicta and common nontarget ants, the ant fauna in the test area was monitored monthly in four distinct ecological communities by pitfall trapping for one year, beginning 5 wks pretreatment. Treatment did not significantly affect species richness, the number of species present, the number of species present from particular subfamilies, nor the number of ants present from the eight most common species. Results indicate that Pro-Drone had no significant effect on the local ant fauna.

INTRODUCTION

More than 3,000 chemicals have been evaluated for control of the red and black imported fire ants, Solenopsis invicta Buren and Solenopsis richteri Forel, since Congress initiated the Federal-State Cooperative Imported Fire Ant Eradication Program in 1957 (USDA 1976). Of the compounds tested, the most effective were the diene-organochlorine insecticides. However, environmental persistence and harmful effects of the cyclodiene on nontarget organisms led the Environmental Protection Agency to cancel their registrations, including Mirex in 1978 (Banks and Schwarz 1980). Since then, research has been aimed at finding alternative control agents. Insect growth regulators (IGRs) with juvenile hormone activity are being investigated. Although these compounds are nontoxic to \(S.\) invicta adults, they do cause deformities in the larvae which are subsequently expressed in the adults. These IGRs have been found to influence \(S.\) invicta fecundity, metamorphosis, and caste determination (Banks et al.

1Hymenoptera: Formicidae.

2This paper reports the results of research only. Mention of a proprietary product does not constitute endorsement or recommendation for its use by either Texas Tech University or the Texas Department of Agriculture.

3Current address: Dept. of Entomology, The Pennsylvania State Univ.
University Park, PA 16802.

4Current Address: Dept. of Entomology, Univ. of Arkansas, Fayetteville, AK 72701.

<table>
<thead>
<tr>
<th>Species</th>
<th>Treated</th>
<th>Untreated</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solenopsis invicta Buren</td>
<td>35</td>
<td>36</td>
<td>71</td>
</tr>
<tr>
<td>Pheidole sp.</td>
<td>29</td>
<td>35</td>
<td>64</td>
</tr>
<tr>
<td>Monomorium minimum (Buckley)</td>
<td>25</td>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>Paratrechina terricola (Buckley)</td>
<td>26</td>
<td>31</td>
<td>57</td>
</tr>
<tr>
<td>Pachycondyla harpax (F.)</td>
<td>20</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Forelius pruinus (Roger)</td>
<td>16</td>
<td>21</td>
<td>37</td>
</tr>
<tr>
<td>Atta texana (Buckley)</td>
<td>14</td>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td>Crematogaster laeviuscula Mayr</td>
<td>12</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>Forelius foetidus (Buckley)</td>
<td>11</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>Solenopsis molesta (Say)</td>
<td>12</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>Solenopsis geminata (F.)</td>
<td>3</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Pogonomyrmex barbatus (Smith)</td>
<td>13</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Conomyrma bicolor (Wheeler)</td>
<td>12</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>Leptogenys elongata (Buckley)</td>
<td>11</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>Labidus coscus (Latreille)</td>
<td>7</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Odontomachus clarius (Roger)</td>
<td>16</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>Conomyrma insana (Buckley)</td>
<td>8</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Camponotus sp.</td>
<td>5</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Strumigenys louisianae Roger</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Neivamyrmex opacithorax (Emery)</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Xiphomyrmex spinosus Wheeler</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Crematogaster punctulata (Emery)</td>
<td>1</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Brachymyrmex depilis Emery</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Myrmecina americana Emery</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Maximum possible times detected: 96 (8 sites sampled monthly for 12 months). Each trap is a subsample of the transect.

Unable to identify to species.

1978, Banks and Schwarz 1980, Banks et al. 1983). IGR-induced deformities, death of developing larvae, and a shift in caste differentiation from worker to sterile reproductive forms causes cessation of worker replacement, resulting in death of the colony (Banks et al. 1983). Of 26 IGRs tested for efficacy against both laboratory and field colonies of S. invicta, Al3-36206 [also known as USDA (BANPAL) MS-10-160b] has shown considerable effect. This compound caused 80% colony mortality (n = 20) in laboratory tests, with the time of death ranging from 14-68 wks postapplication (Banks et al. 1983). Subsequently, this compound (1-(8-methoxy-4,8-dimethylnonyl)-4-(1-methyl) benzene), developed under the name Pro-Drone, reduced S. invicta populations in Florida by 64 and 76% for one year on 1.4 and 1.8 ha field plots, respectively (Banks and Schwarz 1980). Those plots were treated with 10.5 and 4.75 g Al/ha, with the lower rate resulting in the higher percentage of kill. In addition, Phillips et al. (1985) reported that Pro-Drone applied to ca. 53,000 ha in southeastern Texas at the rate of 11.86 g Al/ha reduced colonies by 81.1% in 10 months. The present paper presents the results of a large-scale field test of the efficacy this compound in central Texas against S. invicta and the effect this compound has on nontarget ant species of the area.
MATERIALS AND METHODS

Large-scale field testing on ca. 200,000 ha with Pro-Drone was conducted at non-adjacent sites in Kendall and Kerr Cos., Texas. A standardized bait formulation (Stauffer Chemical Co., Westport, CN) was aerially broadcast at a rate of 11.86 g Al/ha between 10-20 June 1983 and again between 26 September - 1 October 1983. Two study sites for each of four habitat types were used as test and control areas. Habitat types selected were juniper-grassland, live oak-grassland, grazed pasture-grassland, and southern cypress-grassland communities.

A line transect of 20 pitfall traps (440 ml plastic cups containing ethylene glycol placed ca. 5 m apart) was established in each site (design based on recommendations of D. Wojcik, pers. comm. 1983). An asphalt roofing shingle was placed over each trap to form a protective cover. Traps were placed in the field for 7 day periods each 3 wks from May 1983 to April 1984. All ants trapped were identified and counted. Several species were detected only infrequently and were not encountered in both treated and control areas. Therefore, these species could not be compared between treatments and were not included in the analyses. Identifications were verified against determined specimens in the Texas Tech University Museum. Several specimens could be identified only to genus. Voucher specimens have been preserved and deposited in that museum.

A total of 1,920 samples (20 traps/site: 8 sites) was collected during 12 sampling periods. The study was treated as a randomized complete block design with two treatments blocked according to the four habitat types (i.e. there were four replications). All experimental units (E.U. = species) were subjected to a set of standardized conditions and treated alike (Gill 1978). Therefore, the mean number of species or individuals within a species occurring each month within each of the four habitats (blocks) was plotted through time for both the treated and control areas. Analysis of covariance was performed to test the homogeneity of regression coefficients. Data were then analyzed using simple regression and Student’s t-test for homogeneity of regression slopes. Also, the mean number of species occurring each month for the first six months in the treated and untreated areas was compared by Student’s paired t-test, as was the mean number occurring the last six months. A comparison of species richness between treatments for the first six months and again for

![Graph](image)

TABLE 2. Probability that Linear Regression Slopes are Significantly Different for the No. of Species and the No. of Individuals/Species in the Pro-Drone Treated and Control Areas of Bandera, Kendall, and Kerr Cos., Texas (May 1983 - April 1984).

<table>
<thead>
<tr>
<th>Category</th>
<th>t-valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat (species richness)</td>
<td></td>
</tr>
<tr>
<td>Southern cypress-grassland</td>
<td>0.956 ns</td>
</tr>
<tr>
<td>Live oak grassland</td>
<td>1.500 ns</td>
</tr>
<tr>
<td>Juniper-grassland</td>
<td>1.129 ns</td>
</tr>
<tr>
<td>Pasture-grassland</td>
<td>1.022 ns</td>
</tr>
<tr>
<td>Subfamily (no. of species)b</td>
<td></td>
</tr>
<tr>
<td>Dolichoderinae</td>
<td>0.497 ns</td>
</tr>
<tr>
<td>Formicinae</td>
<td>0.613 ns</td>
</tr>
<tr>
<td>Myrmicinae</td>
<td>0.633 ns</td>
</tr>
<tr>
<td>Species (no. of individuals)</td>
<td></td>
</tr>
<tr>
<td>Solenopsis invicta Buren</td>
<td>1.166 ns</td>
</tr>
<tr>
<td>Pheidole sp.</td>
<td>2.110*</td>
</tr>
<tr>
<td>Monomorium minimum (Buckley)</td>
<td>2.936*</td>
</tr>
<tr>
<td>Paratrechina terricola (Buckley)</td>
<td>0.100 ns</td>
</tr>
<tr>
<td>Forelius pruinosus (Roger)</td>
<td>0.236 ns</td>
</tr>
<tr>
<td>Atta texana (Buckley)</td>
<td>2.230*</td>
</tr>
<tr>
<td>Crematogaster laeviuscula Mayr</td>
<td>0.591 ns</td>
</tr>
<tr>
<td>Forelius toetidus (Buckley)</td>
<td>0.920 ns</td>
</tr>
</tbody>
</table>

aStudent’s t-test; P<0.05, d.f. = 20, critical t = 2.086; ns = not significant; * = significantly different, but regression slope of the control is more negative than that of the treated.
bOnly subfamilies represented by at least five species were regressed through time.

the last six months allowed sufficient replication of samples over time and minimized variation resulting from phenological fluctuations (Samways 1983).

RESULTS

Twenty-four taxa representing five subfamilies (Dolichoderinae, Ectoninae, Formicinae, Myrmicinae, and Ponerinae) were trapped in this study (Table 1). Each taxon included in the analyses from the eight study sites occurred in at least one community from both the test and control areas. Based on frequency of capture, *S. invicta* appeared to be the dominant species and was trapped 71 times. The most frequently trapped non-target ants were *Pheidole sp.*, *Monomorium minimum* (Buckley), *Paratrechina terricola* (Buckley), *Pachycondyla harpax* (F.), and *Forelius pruinosus* (Roger).

Analysis of covariance indicated that the variance in species richness among habitats (blocks) was the same at each sampling point in time (months). Therefore, according to Gill (1978), the covariance for any two sampling points would be homogeneous. Because of this homogeneity of variance among blocks, the mean number of ant species occurring in each community for the test and control could be regressed through time (Fig. 1). Regression indicates that the relationship between species richness and time in both test and control areas is linear (P<0.01). In addition, the high coefficients of determination (control: $r^2 = 0.86$;

<table>
<thead>
<tr>
<th></th>
<th>First 6 months</th>
<th></th>
<th>Last 6 months</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treated</td>
<td>Untreated</td>
<td>Treated</td>
<td>Untreated</td>
</tr>
<tr>
<td>May</td>
<td>11.25</td>
<td>11.50</td>
<td>Nov.</td>
<td>4.00</td>
</tr>
<tr>
<td>June</td>
<td>10.50</td>
<td>10.50</td>
<td>Dec.</td>
<td>1.75</td>
</tr>
<tr>
<td>July</td>
<td>12.75</td>
<td>16.75</td>
<td>Jan.</td>
<td>2.00</td>
</tr>
<tr>
<td>Aug.</td>
<td>10.25</td>
<td>13.25</td>
<td>Feb.</td>
<td>1.25</td>
</tr>
<tr>
<td>Sept.</td>
<td>9.00</td>
<td>10.25</td>
<td>Mar.</td>
<td>2.00</td>
</tr>
<tr>
<td>Oct.</td>
<td>7.00</td>
<td>8.00</td>
<td>April</td>
<td>1.25</td>
</tr>
</tbody>
</table>

\[t = 1.07 \text{ ns} \]
\[t = 2.04 \text{ ns} \]

\(^a \)Student's paired t-test (\(P > 0.05 \), d.f. = 10, critical \(t = 2.28 \)).
\(^b \)ns = not significant.

treated: \(r^2 = 0.94 \) indicate that the linear model describes the data well for both treatments. A test for homogeneity of regression slopes between treated and control indicated no significant difference (\(t = 0.059 \); d.f. = 20; \(P > 0.05 \)). Therefore, species richness through time in the treated area was no different from that in the control area. Also, no significant differences were detected in species richness of the habitats, in the number of species per subfamily, or in the number of individuals per species (including \(S. \) invicta) between the two treatments through time (Table 2).

No significant difference was detected in species richness between treated and control plots during the first six months after treatment application (Table 3). Additionally, no significant difference was detected between treatment means for the last six months.

DISCUSSION

Various researchers have utilized pitfall traps to study foraging behavior of fire ants and community structure of other ants (Apperson and Powell 1984, Samways 1983). Although various problems are associated with interpretation of results from sampling by this technique, the method does provide reliable information and allows for comparison among communities regarding annual periodicity of activity and species composition (Adis 1979). To maximize the number of ground foraging ant species trapped in our study, four distinct communities were chosen in each locality. Species richness of the two localities was essentially the same, indicating that the two treatments were homogeneous.

The number of species collected pretreatment in the treated areas was less than in the control areas and this tendency continued in post-treatment samples. The largest numbers (species and individuals/species) were detected at the beginning of the study, indicating that the greatest foraging activity occurred in May and June. The continual decline in numbers may have resulted from the effect of cooler temperatures with the onset of winter and the unusually dry spring experienced during the test period. However, because neither the number of individuals within each species nor species richness for each habitat was significantly lower in the treated area than in the control area, Pro-Drone had no
apparent effect on the ant fauna (target and nontarget species) in Kendall and Kerr Cos., Texas.

The apparent failure of this insect growth regulator to reduce the number of foraging S. invicta in the present study is difficult to explain, whereas the lack of effect on nontarget ants might have been expected since the bait is specifically formulated for S. invicta. Also, a study conducted in southeastern Texas indicated that S. invicta forages quickly and efficiently on Pro-Drone bait (Phillips and Thorvilson 1986). However previous field and laboratory studies on the action of Pro-Drone on S. invicta (Banks and Schwarz 1980, Banks et al. 1983) showed considerable efficacy (64-80% colony death). In addition, Phillips et al. (1985) reported that Pro-Drone significantly reduced S. invicta infestations (81.1%) and completely eliminated worker brood. The present study was conducted over a much larger area than previous studies (200,000 ha) and the application rate (11.86 g AI/ha) was the same as that which provided the best control. Because our study lasted for one year, ample time was permitted for the IGR to affect S. invicta. Although pitfall trapping of worker ants probably is not as good an indicator of S. invicta colony viability as individual colony inspection, reports from land owners in the treated areas and from USDA researchers (H. Collins, unpublished) confirm the lack of significant effect of the IGR on S. invicta mound activity. Weather conditions possibly altered the effectiveness of this IGR, but such effects do not seem likely as the IGR was applied over several days during two different seasons. The predominance of polygynous S. invicta colonies in our test area, which were absent in previous trials, suggest further study of the effects of IGRs on polygynous colonies is needed to determine if these colonies are less affected by IGR treatments than are monogynous colonies.

ACKNOWLEDGMENT

We thank Dr. Oscar Francke for help in the experimental design of this study. Appreciation is extended to William Rogers for his laboratory and field assistance and to the staff of the Texas Tech University Center at Junction for making the facilities available to the project members. Special thanks are extended to Dr. David Wester for his help with the analyses and to Drs. Leland Chandler, Robert W. Sites, and Harlan Thorvilson for their reviews of the manuscript. This study was supported by the Texas Department of Agriculture, Interagency Agreements for 1983-1986. This is contribution No. T-10-172 of the College of Agricultural Sciences, Texas Tech University.

LITERATURE CITED

United States Department of Agriculture. 1976. Control of Insects Affecting Humans. ARS Nat. Res. Program No. 20850, USDA.
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguirre, L. A.</td>
<td>263</td>
</tr>
<tr>
<td>Arnold, M. D.</td>
<td>1</td>
</tr>
<tr>
<td>Bateman, A. C.</td>
<td>23</td>
</tr>
<tr>
<td>Bay, D. E.</td>
<td>83</td>
</tr>
<tr>
<td>Benedict, J. H.</td>
<td>233</td>
</tr>
<tr>
<td>Bergman, D.</td>
<td>243</td>
</tr>
<tr>
<td>Blume, R. R.</td>
<td>215</td>
</tr>
<tr>
<td>Brooks, G. W.</td>
<td>119</td>
</tr>
<tr>
<td>Burke, H. R.</td>
<td>223</td>
</tr>
<tr>
<td>Camp, B. J.</td>
<td>233</td>
</tr>
<tr>
<td>Campbell, J. B.</td>
<td>211</td>
</tr>
<tr>
<td>Cate, J. R.</td>
<td>255</td>
</tr>
<tr>
<td>Chandler, L. D.</td>
<td>269</td>
</tr>
<tr>
<td>Chang, J. F.</td>
<td>233</td>
</tr>
<tr>
<td>Claborn, D. M.</td>
<td>287</td>
</tr>
<tr>
<td>Clayton, T. E.</td>
<td>101</td>
</tr>
<tr>
<td>Clower, D. F.</td>
<td>95</td>
</tr>
<tr>
<td>Cohen, A. C.</td>
<td>171</td>
</tr>
<tr>
<td>Cockendolpher, J. C.</td>
<td>287</td>
</tr>
<tr>
<td>Crowder, L. A.</td>
<td>281</td>
</tr>
<tr>
<td>Davey, R. B.</td>
<td>17</td>
</tr>
<tr>
<td>Davis, B. L.</td>
<td>223</td>
</tr>
<tr>
<td>Dean, D. A.</td>
<td>139, 195</td>
</tr>
<tr>
<td>Debolt, J. W.</td>
<td>125</td>
</tr>
<tr>
<td>Eger, J. E., Jr.</td>
<td>139</td>
</tr>
<tr>
<td>Ellington, J. J.</td>
<td>177</td>
</tr>
<tr>
<td>El-Sokkari, A.</td>
<td>177</td>
</tr>
<tr>
<td>Fargo, W. S.</td>
<td>89</td>
</tr>
<tr>
<td>Fincher, G. T.</td>
<td>83, 203</td>
</tr>
<tr>
<td>Fohn, N. H.</td>
<td>223</td>
</tr>
<tr>
<td>Gilstrap, P. E.</td>
<td>119, 269</td>
</tr>
<tr>
<td>Graham, H. M.</td>
<td>125</td>
</tr>
<tr>
<td>Graves, J. B.</td>
<td>95</td>
</tr>
<tr>
<td>Griswold, T. L.</td>
<td>165</td>
</tr>
<tr>
<td>Guajardo, G.</td>
<td>31</td>
</tr>
<tr>
<td>Guerra, A. A.</td>
<td>10, 31</td>
</tr>
<tr>
<td>Gupta, V. K.</td>
<td>277</td>
</tr>
<tr>
<td>Harris, M. K.</td>
<td>263</td>
</tr>
<tr>
<td>Henneberry, T. J.</td>
<td>101</td>
</tr>
<tr>
<td>Hunter, J. S.</td>
<td>III, 83, 203</td>
</tr>
<tr>
<td>Jackson, C. G.</td>
<td>149</td>
</tr>
<tr>
<td>Johnson, S. J.</td>
<td>131</td>
</tr>
<tr>
<td>Jones, E.</td>
<td>42</td>
</tr>
<tr>
<td>Jones, S. R.</td>
<td>287</td>
</tr>
<tr>
<td>Kelly, S.</td>
<td>281</td>
</tr>
<tr>
<td>King, J. E.</td>
<td>51</td>
</tr>
<tr>
<td>Kunz, S. E.</td>
<td>45</td>
</tr>
<tr>
<td>Lee, B. A.</td>
<td>1</td>
</tr>
<tr>
<td>Maki, D. L.</td>
<td>107</td>
</tr>
<tr>
<td>Meinke, L. J.</td>
<td>249</td>
</tr>
</tbody>
</table>

Michels, G. J., Jr., 23, 55
Miller, E., 42
Miller, J. A., 45
Moffett, J. O., 107
Neece, K. C., 1
Nyffeler, M., 195
O'Brien, L. B., 67
Oehler, D. D., 45
Palumbo, J., 243
Pavloff, A. M., 95
Payne, T. L., 233
Phillips, S. A., 287
Price, J. R., 249
Price, M. A., 223
Price, R. G., 51
Puterka, G. J., 75, 249
Rajakulendran, S. V., 255
Richman, D. B., 277
Ruiz, E., 37
Rummel, D. R., 1
Schmidt, C. D., 113
Scholl, P. J., 155
Schreiber, E. T., 211
Slosser, J. E., 75, 249
Smith, J. W., Jr., 131
Staten, R., 42
Sterling, W. L., 195
Tejada, L. O., 37
Thiagrasan, R., 95
Thomas, D. B., Jr., 161
Urias, N. M., 171
Watson, T. F., 243, 281
Wolfenbarger, D. A., 95
Acrobasis nuxvorella
predicting biological events, 263
use of degree-days, 263

Adalia flavomaculata
predator of the greenbug, 23

Anaphes anomocerus?
egg parasitoid of cotton fleahopper, 255

Anaphes ovijentatus
cold storage, 149

Anthonomus grandis
attractiveness of terpenes from cotton, 233
dispersal, 10
effects of temperature and food on development, 243
response to methyl parathion and guthion, 95

Bee
new Heriadine species, 165

Boophilus annulatus
egg development and fecundity, 17
age of larva and attachment rate, 17

Bracon spp.
host insects and plants, 249

Cattle ear tags
release rates of insecticides, 45

Chelonus (Microchelonus) elasmopalpi
development, 131

Cochliomyia hominivorax
drowning susceptibility, 161

Contarinia sorghicola
parasites of, 119
seasonal incidence and abundance, 119

Cremastus crossidii
parasite of Crossidius pulchellus, 277
taxonomy and biology of, 277

Cyclosa turbinata
feeding habits of, 195

Degree-day
to predict pecan nut casebearer, 263

Development times
estimation of, 89
of boll weevil, 243

Diet
for Geocoris punctipes, 171

Erythmelus psallidis
egg parasitoid of cotton fleahopper, 255

Fulgoridae
new species from U.S. and Mexico, 67

Geocoris punctipes
artificial diet, 171

Haematobia irritans
parasites of, 211

Heliothis virescens
pyrethroid and methyl parathion susceptibility, 281

Heliothis zea
fecundity, 177
mortality, 177
overwinter survival, 1
ovipositional behavior, 177
spring emergence, 1

Hippodamia convergens
predator of the greenbug, 23

Ichneumonidae
genera in NE Mexico, 37
Illidops terrestris
development, 131

Solenopsis invicta
effect of pro-drone, 287

Life stage
estimation of development
time, 89

Spiders
feeding habits, 195
on Castilleja indivisa, 139
on Lupinus texensis, 139

Liriomyza trifolii
biology on bell peppers, 269

Spodoptera frugiperda
diet for rearing, 31

Lycosa rabida
feeding habits of, 195

Staphylinidae
associated with cattle
droppings, 83

Lycus lineolaris
reproductive isolation, 125

S3odoptera fruqiperda
diet for rearing, 31

Megachile rotundata
cell positions, sex ratio, and
emergence, 107

Stomoxys calcitrans
population studies, 155

Nasonia vitripennis
contaminant in fly-rearing, 113

Terpenes
collection and identification
from cotton, 233

Onthophagus gazella
donor brood cells for shipping
eggs, 203

attractiveness to boll
weevils, 233

Parasites
of Diptera in bovine droppings, 215
of Elasmopalpus lignosellus, 131
of Haematobia irritans, 211

Wiseman, John S.
bioigraphy, 223

Pectinophora gossypiella
development and emergence, 101
soil temperature and moisture, 101
visitation to pheromone, 42

Pheromone
pink bollworm visitation, 42

Pristomerus spinator
development, 131

Parasites
of Diptera in bovine droppings, 215
of Elasmopalpus lignosellus, 131
of Haematobia irritans, 211

Pro-drone
effect on fire ants and nontarget
ants, 287

Pseudatomoscelis serisatus
rearing of two egg parasitoids, 255

Pristomerus spinator
development, 131

Pheromone
pink bollworm visitation, 42

Pristomerus spinator
development, 131

Pro-drone
effect on fire ants and nontarget
ants, 287

Pseudatomoscelis serisatus
rearing of two egg parasitoids, 255

Pyrrhalta luteola
fecundity and longevity, 51

Schizaphis graminum
biology of two predators, 23
egg hatch, 75
graminaceous host plants, 55
AUTHOR INDEX TO SUPPLEMENT NO. 10

Beerwinkle, K. R., 1
Blume, R. R., 1

AUTHOR INDEX TO SUPPLEMENT NO. 11

Anderson, R. M., 39
Archer, T. L., 45
Benedict, J. H., 19, 39
Bynum, E. D., Jr., 45
Cole, C. L., 83
Dacus, S. C., 83
Guerra, A. A., 69
Hesler, L. S., 1, 63, 75
McCasland, W. E., 83
Ochou, G., 63

Parker, R. D., 39
Plapp, F. W., Jr., 1, 63, 75
Price, J. R., 25
Robinson, J. R. C., 9, 25
Schmidt, K. M., 19, 39
Slosser, J. E., 9, 25
Treacy, M. F., 19, 39
Walker, J. K., 25
Wolfenbarger, D. A., 69

SUBJECT INDEX TO SUPPLEMENT NO. 10

Dung-feeding scarabs
 diel flight activity, 1
 seasonal distribution, 1

SUBJECT INDEX TO SUPPLEMENT NO. 11

Anthonomus grandis
 hypoxia of petroleum oils, 69
 toxicity of residues, 19
 ULV/oil vs. conventional/water vs.
 water-oil sprays, 19

Contarinia sorghicola
 soybean and cottonseed oils
 for control, 39

Controlled Droplet Application
 compared to conventional
 spraying, 25
 for control of bollworms, 25
 review of development and
 application, 9

Cottonseed Oil
 bollworm control, 25, 69
 controlled droplet
 application, 25
 sorghum midge control, 39
 southwestern corn borer
 control, 45
 spreading on leaf surfaces, 45
 tobacco budworm toxicity, 63, 69
 toxicity to house fly, 63
 worker reentry, 83

Diatraea grandiosella
 soybean and cottonseed oils
 for control, 45
 ULV/oil vs. conventional
 applications with water or
 petroleum oils, 45

Heliothis virescens
 plant and mineral oils
 compared, 63
 toxicity of petroleum oils, 69

Heliothis zea
 CDA/ULV-oil compared to conven-
 tional spraying, 25

Hypoxia
 of petroleum oils to boll
 weevils, 69

Musca domestica
 plant and mineral oils
 compared, 63
 toxicity of petroleum oils, 75
Oils
adjuvants and diluents to control
sorghum midge, 39
petroleum oils vs. cottonseed oil, 69
plant and mineral oils compared for
control of tobacco budworm and house
fly, 63
review of uses for insect control, 1
spreading on various crops, 45
synergism of various classes of
insecticides, 63
worker reentry, 83

Petroleum Oils
boll weevil control, 69
house fly toxicity, 63, 75
hypoxia, 69
leaf residues, 75
southwestern corn borer control, 45
tobacco budworm control, 63, 69

Soybean Oil
boll weevil control, 19
sorghum midge control, 39
southwestern corn borer control, 45
spreading on leaf surfaces, 45
tobacco budworm toxicity, 63
toxicity to house fly, 63

Ultra-Low Volume/Oil
compared to conventional/water and
water-oil sprays, 19
for control of boll weevils, 19
for control of sorghum midge, 45

Water-Oil Sprays
compared to ULV/Oil and conventional/water
sprays, 19
for control of boll weevils, 19
related to worker reentry, 83

Worker Reentry
water and cottonseed oil/water spray
residues compared, 83